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1 Problem Setting

In this project we consider the following problem:

'Proteins are large molecules made up of smaller molecules called
amino-acids. The amino-acids bind together in a certain order to
form the protein; thus, a protein can be viewed as a string over a
finite alphabet (this is its so-called primary structure). Each amino-
acid has a specific molecular weight (or mass), which can be specified
very exactly. Given a substring of a protein (a peptide), its molecular
weight is simply the sum of the masses of the individual amino-acids.
However, the converse is less obvious: Given a mass M € R™, is there
a multiset of amino-acids such that their mass equals M7 Or put
differently, i1s there a peptide whose mass is exactly M7 We refer to
such a multiset of amino-acids as a decomposition of M.

Example: The four amino-acids threonine (T), serine (S), alanine (A), and
arginine (R) have the weights

m(T) = 101.04768,
m(S) = 87.03203,
m(A) = 71.03711,
m(R) = 156.10111.

So the weight of the string TTSAR is 516.26561. We are interested in the converse
case, where for a given mass M, e.g. M = 516.26561, we look for decompositions

of M.
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In general, we would like to find, for a given mass M and an error tolerance &,
all multisets of letters with weights M £ ¢. In reality we are given twenty amino-
acids with weights between 57 and 186 and we want to determine substrings of
20-100 amino-acids. In the laboratory we can weigh with a precision of £0.5.

2 Mathematical formulation of the problem

We are given an alphabet of constant size d € N and weights my,...mg € RY for
the different letters. For a given weight M € R* and an error tolerance ¢ > 0,
our question is if there exist multiplicities ky,... kg € Ny such that

kymy + ...+ kgmg € [M —e, M +¢].

In vector formulation we define the weight vector m := (my,...mg) and then ask
for a grid point k = (ky,...k;) € N& such that

(k,m) € [M—e, M +e¢]. (1)

Because we are interested in all possible decompositions of M, we would like to
characterize the set of all grid points k& € N¢ satisfying (1):

I':={keN:|(k,m)e[M—c,M+c]}.

Geometrically, ' is the subset of N¢ lying between the hyperplanes h* and A~
defined by

Rt ={z e RY| (z,m) = M + ¢},
h™:={z ¢ RY| (z,m) = M —¢}.

3 Algorithm

As the masses of the amino-acids should be measurable within sufficient ex-
actness, we can assume that ¢ is much smaller than the mass of the lightest
amino-acid:

e € min{my,...mg}. (2)

In the following we mean by equation (2) that ¢ > 0 is chosen sufficiently small
such that every hyperplane parallel to one of the axes intersects with at most one
point of I', or in other terms:

|k—K|,>2 VEkKEET, k+k.



For the intuition we first investigate the case of having a binary alphabet,
that is d = 2: we look for all grid points (ki, ks) € N which lie between the two
lines hE := {(z1,22) € R? | myzy + mazy = M + ¢},

Example: my =3,my; =5 M = 16, = 1.

> X1

From the figure or by calculating we get I' = {(5,0), (4,1),(2,2),(0,3)}.

To get all possible decompositions lying in the interval [M — e, M + €], we
could proceed as follows: we start by looking at the two points where h~ and A™
intersect with the zj-axis. If there is a grid point on the z;-axis lying between
these two points, it is an element of I'. Then we go backwards on the x;-axis to
the next smaller grid point, always checking if the parallel to the zs-axis contains
a grid point lying above 2~ and below A™T.

Algorithm TEST(mq, mq, M, ¢)
Input: my, mqy, M,c € RT,
¢ < min{m, my},

£=10
Output: £=T
Fr e [2E]
if ki, = LMnTTEJ add (k1,0) to £
while k; > 0
do k; «+ k; —1
fy - [Hosoham
if ky = LM“m;lk”’”J add (kq,kq) to £
return £



The number of if-tests is [Mm—:ﬂ + 1, hence we can reduce it by choosing
my > my. In the example, interchanging m; and my would reduce the number
of if-tests from 6 to 4.

The following algorithm IMPLICIT is a generalization of the above algorithm
TEST to any dimension d:

Algorithm ImMpPLICIT(d, m1,...mgq, M, ¢)
Input: d € Nymy,...mg, M,c € RT,
e € min{my,...mq},

£=10
Output: £=T
by ¢ [M=2]
if £, = LMm—"l‘aJ add (%1,0,...0) to £
if d>1
while &, > 0
do k; «+ k1 —1
£« IMpPLICIT(d — 1,mg,...mq, M — kymy, €)
add (k,£') to £
return £

By (k1, £') we mean the set of grid points {(k1, k2, ... ,ka) | (k2,... ,ka) € £}

Analogous to the two-dimensional case the number of if-tests is

=1 rar .

1T +1

=1 my
and to get it as small as possible we choose mg = min{my, ... mg}. Thus the num-
ber of if-tests is polynomial of order O(M91) with leading term 1/(m - - - ma_1).

In the problem setting of the twenty amino-acids we have my - ... - myg =
2.75-10%. An amino-acid has an average weight of about 120, thus determining
a string of length 50 and weight 50 - 120 costs about

(50 - 120)'
2.75 - 109

if-tests. Hence calculating all possible decompositions can become quite expen-
1ve!
sive!
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4 Lattice points of tetrahedra

Suppose that we are interested only in the number of all possible decompositions
of M and not in the concrete solutions. Then a formula for the number of all
grid points k € NJ such that

(k,m) <A, XeRT,



would lead us close to the solution of the problem: denoting the number of all
these points by Na(A;m), we get

Na(M + e;m) — Ng(M — e;m) (3)
= #{ke N | (k,m)e (M —e, M +¢]} =#(T —h7).

Unfortunately, there are no exact formulas for Ng(A;m). Lehmer [1] showed the
existence of polynomials Py(A;m), Qa(A;m) of degree d in A such that

Pi(A;m) < Ng(A;m) < Qa(A;m).
Furthermore P;j(A;m) and Qq(A; m) have the same leading term, namely
)\d

d'mimg - ... -myg

?

which yields an error of O(A?"!). Thus, we can estimate the number (3) with an
error of O(M9="). Spencer [3] showed that, if 2¢ ¢ Q for some 1,7, then there

my

exists a polynomial R4()) of degree d in A such that
Na(A;m) = Ra(X) + 0()\‘1_1).

mq

Since we measure only rational quotients in the laboratory, Spencer’s result
Tnj

doesn’t help for our problem setting.

5 Orthogonal projection

We consider the line g := {t(m1,...mq) | t € R} orthogonal to the hyperplanes
h* and k™. Then a grid point (ky,...ks) € Nd is an element of T if and only if
its orthogonal projection onto ¢ has distance A € [M — e, M + ¢] from the origin.

X2
A




This leads us to the following idea: we project the grid N¢ orthogonally onto g,
getting a point set 3, and then investigate how the set P is distributed on g.

If the masses my,...mq are rational, I conjecture that the points of P have
minimal positive distance from each other:

6 :=inf{[p—ql [ p,q € B,p # ¢} > 0.
For the two-dimensional case there is a simple formula for 4:

Proposition 1. If my : my = u : v for relatively prime numbers u,v € N, then

For the proof we need Pick’s Theorem:

Lemma 2 ([2]). Let A be the area of a simply closed lattice polygon®. Let B
denote the number of lattice points on the edges and I the number of points in
the interior of the polygon. Then

1

Proof. Replace N3 by the whole grid Z? and observe the square spanned over the
rectangular triangle with sides u and v:

2A lattice polygon is a polygon with all its corners on the grid.



Because we assumed u and v to be relatively prime, the only lattice points on
the edges of the square are the four corners. With Pick’s Theorem, A = u? 4 v?
and B = 4 we get the number I of interior grid points in the square to be
I = u?4+v?—1. The projections of these interior points onto g divide the segment
0P into u? + v? pieces, and by the intercept theorem (in German: Strahlensatz)

Vu2 o2 1

they all have the same length E = Jmre
Now we look at all grid points between the two parallel lines /; and [5: dividing
this area into squares as in the figure it is easy to see that for every grid point

there is a unique grid point in the interior of the original square which has the

same image under the projection, or in other words: projecting only the interior
grid points of the square yields already all image points 3. O
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