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Abstract. We have developed and implemented a framework for de
novo sequencing of peptides using tandem mass spectrometry data. It
first cleans the input spectrum with a number of data cleaning algorithms
(“grass mowers”), followed by a sequencing algorithm that is a modifica-
tion of a dynamic programming algorithm introduced in [CKT00]. In first
experiments, our prototype performs well (but not better) in comparison
with Sequest, a frequently used software for peptide identification with
database–lookup, and Lutefisk, a de novo peptide identification tool. In
this paper, we present first results in the development of an efficient de
novo sequencing tool.
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1 Introduction

Automatic interpretation of mass spectrometry data is becoming increas-

ingly important in high–throughput protein identification.

In tandem mass spectrometry (MS/MS) [HYS86], data are obtained in

two steps. In the first step, a mass fingerprint of the protein is generated:
The protein is cleaved into peptides, using a sequence–specific proteinase

(e.g. trypsin, cleaving on the C–terminal side of arginine or lysine). Then
the masses of the peptides are determined by mass spectrometry. In a

? Authors appear in alphabetical order.
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second step, some of the peptides are selected (e.g. those with the highest

intensities) and dissociated into fragment ions (CID: collision induced dis-
sociation). There are two types of ions: b–ions, which have the N–terminus
of the peptide, and y–ions, which have the C–terminus ([RF84]). b–ions

correspond to prefixes of the amino acid sequence of the peptide, and y–
ions to its suffixes. The tandem mass spectrum of a peptide consists of a

list of molecular masses measured during the experiment, along with their
abundance values (m/z). Ideally, a spectrum contains exactly all b–ions

and y–ions of the peptide. However, due to contamination, measurement
inaccuracies and other problems, a typical real–world spectrum is a long

list of pairs of masses and abundance values, much of which is noise, and
only few of which are actually derived from the original peptide.

In peptide identification using mass spectrometry, the problem is to

determine the peptide’s primary structure, i.e., its sequence of amino
acids, given a tandem mass spectrum.

One prominent approach for protein identification is to identifiy pep-

tides using a protein database: Given a tandem mass spectrum of a pep-
tide, at first peptides from the database with matching parent masses

(the total mass of the peptide) are suggested. Then the given spectrum
is compared to each of the theoretical spectra of the database peptides,

and the peptides are ranked according to how well their spectra match to
the given spectrum. Software tools which implement this approach such
as Sequest ([Sequest:www]) show that this method is very successful in

identifying proteins listed in the database. However, its shortcoming is
its dependence on a database and on the correctness of its entries. Even

though Sequest allows for inclusion of some post–translational modifica-
tions, unsequenced proteins and proteins that are the products of alter-

native splicing processes are not considered. In these cases, techniques for
interpreting the tandem mass spectrum without using information from

a database are needed. This is referred to as de novo sequencing. In gen-
eral, de novo sequencing consists of two steps: first, a set of theoretical

peptides which match the given tandem mass spectrum is generated. This
set can be very large due to contamination and measurement errors. In
a second step, these theoretical peptides are ranked using heuristics, and

those peptides with the highest ranking are output.

Several (more or less efficient) algorithms have been proposed to gen-

erate the set of matching peptides, e.g., Fernandez-de-Cossio et al. [FGS97],
Taylor and Johnson [TJ01], and Danč́ık et al. [DAC99] transform the
spectrum to a graph in which every connected path represents a possible

sequence. They use different algorithms to select good matching sequences
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among the very large number of possible paths. There are several soft-

ware packages that implement de novo sequencing algorithms, such as
Lutefisk ([TJ97],[TJ01],[Lutefisk:www]), and others ([BioAnalyst:www],
[biotools:www] [BioWorks:www], [MSfast:www]).

Recently, Chen et al. introduced a de novo sequencing algorithm that

uses dynamic programming ([CKT00]). The algorithm has two variants,
one for clean data, and one for noisy data. Since clean data do not exist

in biological experiments, only the noisy variant is applicable. Chen et
al. proved that the algorithm for noisy data has running time at most

cubic in the number of peaks of the given spectrum. However, they did
not provide an implementation of their algorithms. Näıve use of the noisy

variant is computationally too complex, since the number of potential
solutions is too large. In addition, measurement errors need to be taken

into account.

We have developed heuristics (“grass mowers”) for assigning relevance
values to the input peaks, and have implemented a framework, AuDeNS,
that first uses the grass mowers to preprocess the spectrum, and then em-

ploys a modification of the noisy sequencing algorithm of [CKT00] that
can handle measurement errors. Also, we have solved the problem of the

potentially exponential number of solutions by assigning relevances to
the solutions and only enumerating those within a user–specified thresh-

old relative to the maximal relevance value. The output of AuDeNS is a
ranked list of “multi–sequences” (sequences that take inherent ambigui-

ties of the input into account).

Even though our tool does not sequence as well as Lutefisk at the
moment, we believe that it can be developed to match or even outperform

Lutefisk for a number of reasons:

1. In our experiments, AuDeNS has much lower running times than ei-

ther Lutefisk or Sequest, due to a fast algorithm and efficient imple-
mentation.

2. AuDeNS is a framework that is capable of having new mowers added

to it with minimal effort. The mowers we employ at the moment are
heuristics that are plausible but need further fine–tuning, esp. with

regard to the parameters.

3. Even without having algorithmically tuned the parameters of Au-
DeNS, our output compares relatively well with that of both Lutefisk

and Sequest.

This paper constitutes a first report on work in progress.
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1.1 Overview

The paper is organized as follows: We first give a formal problem defini-
tion in Section 2. In Section 3, we describe our program in detail, first

explaining the grass mowers (3.1), then the sequencing algorithm (3.2),
followed by details of our implementation (3.3) and future work on Au-
DeNS (3.4). Finally, in Section 4, we present first experimental results.

2 Problem Definition

A peptide is a string over the 20–letter alphabet of amino acids, where each

amino acid A is assigned a non–negative molecular mass m(A) (measured
in Daltons (Da)). Typical length of peptides in our setting is between

10 and 20 amino acids. Given a peptide P = A1 . . .Ak, its dissociation

pattern is the set DP = {mparent,P , mb,1, . . . , mb,k−1, my,1, . . . , my,k−1},

where mparent :=
∑k

i=1 m(Ai) + offsetparent is the mass of the parent ion

(the entire peptide), mb,r :=
∑r

i=1 m(Ai) + offsetb, 0 < r < k, is the mass

of the b–ions (its prefixes), and my,r :=
∑k

i=r m(Ai) + offsety , 0 < r < k,
is the mass of its y–ions (its suffixes). Hereby, offsetparent, offsetb, offsety
are positive real numbers1.

A tandem mass spectrum S as found in a .dta–file2 contains the parent

mass mparent,S , followed by a list of pairs (m(i), a(i)), i = 1, . . . , n, where
the m(i) are molecular masses, and a(i) is the abundance of m(i). The

entries are ordered w.r.t. their m–values. Typical values for n are between
35 and 900. A pair (m(i), a(i)) is often referred to as a peak, which derives

from the customary visualization of mass spectra (see Figure 1). For the
same reason, entries with large, resp. small abundance values are called

high resp. small peaks. We will refer to peak (m(i), a(i)) simply by i.
In the following, we will call peaks that derive from ions of the original

peptide real peaks, and the others noise or grass.3 In addition, we are given
a mass tolerance ε, the measurement error of the mass spectrometer.4

A solution to a given spectrum S is a peptide P s.t. |mparent,P −

mparent,S | ≤ ε. In addition, we would like to match the masses of DP with

1 In fact, offsetparent = offsety = 19 Da, and offsetb = 1 Da.
2 An ASCII–formatted file as output by Micromass Qtof and Thermofinnigan ion trap

programs.
3 Because of their appearance in the visualization, groups of small peaks are sometimes

referred to as grass. Since much of this part of the input is not well interpretable,
some of the data preprocessing is concerned with getting rid of this grass. This is
the reason we call our data cleaning algorithms grass mowers.

4 For our data, we use ε = 0.5 Da.
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the real peaks of the spectrum, i.e., find pairs (m, m(i)), m ∈ DP and real

peak i of S, for which |m−m(i)| ≤ ε holds. However, since it is not clear
from the outset which peaks of S are real peaks, we allow that peaks not
be matched, and in the extreme, that no peaks match with DP . Thus,

since the only necessary condition for a solution is that the parent masses
match within the given mass tolerance, the solution cannot be unique.

In particular, given one solution of length k, all of its permutations will
match, typically a number exponential in k. Another reason for non–

uniqueness of solutions is that the two amino acids isoleucine (I) and
leucine (L) have exactly the same molecular mass. Increasing the mass

tolerance causes further pairs of amino acids to become indistinguishable.
Missing real peaks in the spectrum account further for non–uniqueness of

the solution, e.g., m(N) = 2 · m(G).

The aim, therefore, is to output a ranked list of solutions such that

the peptide that gave rise to the spectrum has high ranking. A multi–

sequence is a finite set of sequences that we write as a regular expression,
e.g., V(N|GG)GYSE(I|L)ER is short for the set {VNGYSEIER, VNGY-

SELER, VGGGYSEIER, VGGGYSELER}. Rather than listing feasible
solutions individually, AuDeNS outputs a ranked list of multi–sequences.

3 AuDeNS: A Tool for Automatic de Novo Peptide

Sequencing

AuDeNS works in the following way: In a first step, it applies the mowers
to the input data, assigning to each input peak i a relevance value r(i),

with the default being r(i) = 1. Hereby, each mower M uses a relevance
factor RelM (which can be set as a parameter of AuDeNS), and the rel-

evance value of peak i is then given by r(i) := 1 +
∑

M mower

RelM · M(i),

where M(i) is the value assigned to peak i by mower M . The relevance of

a solution is then the sum of the relevances of the peaks matched by this
solution. All mowers output values between 0 and 1, and thus, their out-

put can be weighted against each other by the relevance factors specified
by the user. In addition, the mowers each have parameters that can be

specified (see Section 3.1 for details). It is an important aspect of AuDeNS
that new mowers can be integrated with minimal effort.

In a second step, AuDeNS applies the sequencing algorithm. Hereby,
the minimal quality of the solutions can be specified as a relative value
as measured in comparison to the relevance rmax of a best solution, i.e., a

0 ≤ δ ≤ 1 s.t. all solutions with relevance greater or equal to the threshold



6 Baginsky, Cieliebak, Gruissem, Kleffmann, Lipták, Müller, Penna

rδ = (1− δ) · rmax are to be computed. First, a table is built up and rmax

is computed. Then, all solutions with relevance greater or equal rδ are
computed and output, using backtracking in the table.

Global parameters such as mass tolerance and relevance factor of the

mowers allow for a fine–tuning of AuDeNS.

Fig. 1. A tandem mass spectrum with corresponding relevance values. The x–axis
represents the masses. The upper graph shows the abundance values of the masses on
the y–axis, and the lower graph their relevance values.

3.1 The Mowers

Threshold Mower Peaks with very small abundance values, e.g., under
10000, are unlikely to be real peaks. The threshold mower marks all peaks

with an abundance value above a given (low) threshold.

Window Mower The window mower has two parameters: the size of a

window W and a number k of peaks per window. It moves along the input,
and, for each peak i, marks the k peaks with highest abundance within

the window starting at m(i), i.e., those k peaks with highest abundance
in the set {j | m(i) ≤ m(j) ≤ m(i) + W}. The mower assigns each peak

i a value proportional to the number of times it has been marked.
Roughly speaking, high peaks are more likely to be caused by peptide

ions than low peaks. The rationale for the window mower then is twofold:
First, within any window of the approximate size of the smallest amino

acid mass, there can be at most two real peaks, namely one b–ion and
one y–ion.

Second, when sequencing manually, contiguous regions of m/z values

can be found such that the abundance of the peaks within one region
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do not differ very much, while they do differ between different regions.

Regions are then scaled with different factors in order to level the height
of the peaks, and then peaks which are high within their region are con-
sidered for the sequencing process ([SJ01]).

The reasons are inherent technical characteristics of an ion trap that
result in differential efficiencies of mass measurements over the entire

mass range. During an MS/MS cycle, a selected peptide is excited by
resonance excitation to accomplish collision induced dissociation. How-

ever, resonance excitation and resonance ejection are virtually identical,
resulting in the possible loss or inefficient measurement of product ions

during resonance excitation. As a consequence, low molecular mass ions
are often underrepresented in an MS/MS spectrum (e.g., product ions

with less than 30% of the parent mass are only rarely observed, [A01]).
Another reason for “regional differences” in mass measurement efficien-
cies are the inherent biochemical characteristics of amino acids, either

resulting in efficient (e.g. Proline) or inefficient (e.g. Glycine) dissociation
of a peptide bond ([SJ01]).

Therefore, considering only the absolute abundance of the peaks is not
sufficient to identify real peaks, but a method that takes the differences

between regions into account is more appropriate, such as employed by
the window mower.

Isotope Mower Typically, single ions give rise to more then one peak

in an MS/MS spectrum due to isotopes. Isotopes differ in the number
of neutrons they have in the nucleus, and they occur in nature with dif-

ferent probabilities (e.g., carbon has either 6 neutrons, with probability
98.892%, or 7 neutrons, with probability 1.108%). Thus, peaks without
corresponding isotope peaks are rather unlikely to be caused by ions, and

the number of isotope peaks of a single peak can be used to adjust the
relevance of a peak.

The isotope mower has a parameter k, the number of isotopes re-
quired. It assigns a value to each peak i proportionate to how many

isotopes are present in the spectrum, i.e., for each j, 1 ≤ j ≤ k, it checks
whether there is a peak with mass m such that |m− (m(i) + j)| ≤ ε.

Intersection Mower The intersection mower considers all spectra ob-

tained from the same experiment as the current spectrum S that have
the same parent mass m ∈ [mparent,S − ε, mparent,S + ε]. It then assigns
each peak i in S a value proportionate to the number of other spectra in

which it is also contained.
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The rationale is the consideration that other spectra with the same

parent mass that stem from the same experimental setup are likely to
have been derived from the same peptide. Even though in theory, many
different peptides will have the same parent mass (e.g., all permutations

of the same amino acids), in reality—as some preliminary database ana-
lysis has shown—it is not very likely5 that different peptides stemming

from the same protein or from the same small number of proteins have
the same mass.

Complement Mower If i is a peak in the spectrum which arose from
a b–ion, then we expect the corresponding y–ion to be present in the

spectrum, and vice versa. Therefore, for any peak i in the spectrum,
we increase the relevance of i if the complement peak i′ with m(i′) =

mparent − offsetparent + offsetb + offsety − m(i) (within ε) is present. This
mower is very closely related to the sequencing algorithm we use, since

the algorithm heavily relies on pairs of complement peaks.

3.2 The Sequencing Algorithm (Weighted-Chen-et-al-

Algorithm)

Our sequencing algorithm is based on the dynamic programming algo-
rithm for noisy data introduced in [CKT00]. The algorithm in [CKT00]

maximizes the sum of weights of peak pairs (edges), while our algorithm
maximizes the sum of the relevance values assigned to the peaks. We refer

to this algorithm as Weighted-Chen-et-al-Algorithm.
The idea of the Weighted-Chen-et-al-Algorithm is to generate

a directed vertex–labelled graph G = (V, E) with two special vertices x0

and y0, such that any directed path from x0 to y0 satisfying an additional
constraint will correspond to a solution. For each peak i, there are two

vertices xi, yi ∈ V , whose masses are the smaller and the larger value,
respectively, of the mass of peak i and its complement w.r.t. the parent

mass. The relevance r(v) of a vertex v is the relevance of the correspondig
peak assigned by the mowers. The reason for generating pairs (xi, yi) of

vertices is that if a peak is real, then it is either a prefix (a b–ion) or
a suffix (a y–ion)—and if the spectrum were perfect, then it would also

contain its complement (see Section 3.1).
If two vertices have the same mass within the mass tolerance ε, then

we merge them, and assign the new vertex the maximal relevance value
among the merged vertices. The vertices are sorted such that m(x0) <

5 only between 2 and 7%
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m(x1) < . . . < m(xn) < m(yn) < . . . < m(y1) < m(y0)
6. Hereby, x0

and y0 are two new vertices with masses m(x0) = offsetb and m(y0) =
mparent − offsetparent + offsetb, and both relevance 1. At this point, for
each pair (xi, yi), i = 1, . . . , n, we know that it either constitutes noise, or

one is a prefix of the peptide and the other a suffix—but we do not know
which is which.

G contains a directed edge (u, v) if m(v)−m(u) can be written as the
sum of some amino acid masses within the mass tolerance (see Section 3.3

for details). Call a directed path P in G k–compatible if P contains at most
one vertex of each pair (xi, yi), i = 1, . . . , k. Any n–compatible directed

path P in G from x0 to y0 corresponds to a solution to the input, because
it represents a partial list of prefixes.

We will now fill in a table Q of size (n + 1) × (n + 1) that will be
used to compute paths from x0 to y0. Define w(P ), the pathweight of the
directed path P in G, as w(P ) :=

∑

v∈P r(v). Set

Q(i, j) := max{w(L) + w(R) | L directed path from x0 to xi,

R directed path from yj to y0,

and L ∪ R is max(i, j)–compatible.}

The table Q has the property that Q(i, j) > 0 if and only if there is a
path L from x0 to xi and a path R from yj to y0 s.t. L ∪ R is max(i, j)–

compatible. It can be filled in using the crucial observation that the maxi-
mum path for a given pair xi, yj , i < j, can be computed using all maximal
paths for pairs xi, yk, for k < j. Since j > i, yj can be added to any such

pair L ∪ R without violating the compatibility–condition. The situation
is analogous for the case where i > j. Thus, Q(i, j) can be computed as

follows:

Q(i, j) =











max0≤k≤j{Q(i, k) | (yj , yk) ∈ E, Q(i, k) > 0} + r(yj) if i < j

0 if i = j

max0≤k≤i{Q(k, j) | (xk, xi) ∈ E, Q(k, j) > 0} + r(xi) if i > j

The value of a maximal path is now rmax = max{Q(i, j) | (xi, yj) ∈ E}.
Note that rmax = 0 means that there is no feasible solution to the input,

i.e., the parent mass cannot be written as a sum of amino acid masses
within the given error tolerance ε.

Now all paths within the given threshold are enumerated recursively
via backtracking in the table.
6 Because of the merging of vertices, the new value of n may have decreased, but we

ignore this detail here.
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3.3 Details of Efficient Implementation

Enumerating the Multi–Sequences Entry Q(i, j) contains the maxi-

mum weight of any path from x0 to xi and from yj to y0. Thus, the table
Q can be used in a backtracking algorithm to recursively enumerate all

paths from x0 to y0 whose weights are above a given threshold. The use
of a threshold allows for pruning the tree of computation generated by

the backtracking process in early stages. This makes the time spent in
the recursion proportional, not to the total number of possible paths, but
to the number of paths that are of interest (whose weights are above the

threshold).

Deciding Whether a Mass is a Sum of Amino Acids To decide
whether a given mass can be represented by a sum of masses of certain

amino acids and to list all such amino acid sequences, we work with
an array of Boolean variables b0, . . . , bN . Variable bi represents masses
m ∈ [i∆m, (i + 1)∆m). Let mi = i∆m + ∆m/2 be the center mass of

the interval represented by bi. The maximal index N depends on the
maximal mass Mmax considered and is computed as N = dMmax/∆me.

We use ∆m = 0.01 Da and Mmax = 1000 Da.

The variables bi are initialized as follows: If the mass interval repre-

sented by bi contains the mass of any single amino acid, bi is set true,
otherwise bi is set to false. This can be done in 20 + N = O(N) time.

In a second phase, we run from b0 to bN and set bi true, if there is an
amino acid mass a such that the variable bj containing mi − a is true.

The second pass takes 20N = O(N) time steps since there are 20 amino
acids.

To answer the question whether a mass sum m measured with error ε
can be represented by a sum of masses of certain amino acids, we check

all variables bi that represent part of the interval (m− ε, m + ε). If one of
them is true, the answer is yes, if all are false, then the answer is no.

Enumeration of Subsequences To enumerate all amino acid sequences
for a mass sum m and an error ε, we proceed as follows: For all true bi’s

that represent part of the interval (m − ε, m + ε), and for all amino acid
masses a, we test whether the variable bj containing mi − a is true. If so,

we store the letter of amino acid a and recursively enumerate all sequences
for mass mj . This algorithm, however, enumerates all permutations of all
possible sequences. To avoid this, in recursion depth d we only consider

amino acids whose letters are lexicographically larger or equal to the
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animo acid letter chosen in depth d−1. This way, only distinct sequences

with respect to permutation are output.

3.4 Future Work

Parameters At the moment, parameters of the mowers (such as thresh-

olds or number of isotopes) as well as their relevance factors are set to
hand selected values. Tuning these parameters algorithmically will be a

major part of our future work. We will run AuDeNS on input spectra
where the correct sequence is known in advance, either from the exper-

imental setup (using known peptides), or from the output of other se-
quencing programs (such as Sequest or Lutefisk), and use machine learn-
ing algorithms to adapt the parameters of our tool.

Artificial noise We are working on a model for “artificial noise” in tan-

dem mass spectra. This model will allow to generate an artificial spectrum
from a given amino acid sequence, and to introduce noise of different types
in different amounts (such as measurement errors or addition and ommi-

sion of peaks). Once the model of artificial noise maps the “real world
noise” in an adequate way, we will use it to investigate the influence of

different types of noise and their combination on the quality of the result
of AuDeNS.

Mowers We will investigate and implement new types of mowers, e.g.,
an offset mower, which is similar to the intersection mower, except that

it allows for an offset between the peak matches. This offset mower will
enable us to include data from experiments such as methyl ester derivati-

sation, where each y–ion is shifted by 14 Da.

In addition, existing mowers will be improved, e.g., for the window
mower, the fixed size window might be replaced by windows of flexible

sizes, which will allow to better identify regions of peaks with almost
identical height.

Ranking At the moment, ranking of the result multi–sequences in Au-
DeNS is only based on the mowers’ relevance values. Postprocessing of

the result will allow for even more appropriate rankings. E.g., statistical
information from protein databases (such as the distribution of all tu-
ples of amino acids) can be used to indicate how likely a certain result

multi–sequence is.
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4 First Experimental Results

The running time of AuDeNS depends on the number of sequences com-

puted. To create the best 30 sequences, AuDeNS takes less than one
second to read, mow, and sequence a spectrum.

We compared the output of AuDeNS to the results of Sequest and
Lutefisk. Lutefisk needs 2 seconds up to several minutes on the same

computer and same spectrum to output the best 0 to 5 solutions. How-
ever, Lutefisk outputs individual peptide sequences, as opposed to multi–

sequences of AuDeNS. Even without algorithmically tuned parameters of
the mowers, the best sequence found by Sequest for a spectrum is very

often among the first 30 sequences created by AuDeNS. Otherwise, there
are many almost correct sequences among the output. Three selected ex-

ample outputs are shown in Figures 2 to 4. The parameters had been set
as follows:

threshold mower: relevance 40 threshold 8000
window mower: relevance 10 no. of peaks 2, window 50
isotope mower: relevance 10 no. of isotopes 1

complement mower: relevance 40
intersection mower: relevance 0

740.0 V(N|GG)GYSE(I|L)E(R|GV)
735.0 V(N|GG)GY(I|L)C(I|L)E(R|GV)
716.0 V(N|GG)GYAGS(I|L)E(R|GV)
715.0 V(N|GG)GYES(I|L)E(R|GV)
715.0 V(N|GG)GYDT(I|L)E(R|GV)
715.0 V(N|GG)GYTPME(R|GV)
711.0 V(N|GG)GYSGA(N|GG)E(R|GV)
705.0 V(N|GG)GYTD(I|L)E(R|GV)

Fig. 2. 2894.dta: Sequest sequence VNGYSEIER has the highest rating in the AuDeNS
output.
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655.0 (AG|Q|K)A(I|L|N|GG)AAA(I|L)(N|GG)(AG|Q|K)
655.0 (AG|Q|K)(N|GG)AAAA(I|L)(N|GG)(AG|Q|K)
644.0 (AE|IS|LS|TV|CP)(I|L)AAA(I|L)(N|GG)(AG|Q|K)
615.0 (AG|Q|K)A(I|L|N|GG)AAA(I|L|N|GG)(I|L)(AG|Q|K)
615.0 (AG|Q|K)(N|GG)AAAA(I|L|N|GG)(I|L)(AG|Q|K)
605.0 (AG|Q|K)PSAAA(I|L)(N|GG)(AG|Q|K)
605.0 (AG|Q|K)(N|GG|D)AAAA(I|L)(N|GG)(AG|Q|K)

Fig. 3. 3165.dta: Sequest sequence AEIAAALNK is at third position in the AuDeNS
output.

496.0 (AG|Q|K)AE(N|GG)(AG|Q|K)SGFFE
495.0 (AG|Q|K)AE(N|GG)AAEFFE
495.0 (AG|Q|K)AE(N|GG)(AG|Q|K)GSFFE
486.0 (AG|Q|K)AE(I|L)GS(N|GG)YFE
486.0 (AG|Q|K)AE(AG|Q|K)(N|GG)SGFFE
485.0 (AG|Q|K)AE(I|L)GS(N|GG)YFE
485.0 (AG|Q|K)AE(N|GG)AA(N|GG)YFE
485.0 (AG|Q|K)AE(AG|Q|K)(AG|Q|K)EFFE
485.0 (AG|Q|K)AE(AG|Q|K)(N|GG)GSFFE
485.0 (AG|Q|K)AE(I|L)E(AG|Q|K)YFE
485.0 (AG|Q|K)AE(N|GG)(AG|Q|K)(AG|Q|K)YFE
485.0 (AAG|AQ|AK)E(N|GG)(AG|Q|K)SGFFE
484.0 (AAG|AQ|AK)E(N|GG)AAEFFE
484.0 (AAG|AQ|AK)E(N|GG)(AG|Q|K)GSFFE
481.0 (AG|Q|K)AE(I|L)ESGFFE
480.0 (AG|Q|K)AE(I|L)EGSFFE
475.0 (AAG|AQ|AK)E(I|L)GS(N|GG)YFE
475.0 (AAG|AQ|AK)E(AG|Q|K)(N|GG)SGFFE
474.0 (AAG|AQ|AK)E(I|L)GS(N|GG)YFE
474.0 (AAG|AQ|AK)E(N|GG)AA(N|GG)YFE
474.0 (AAG|AQ|AK)E(AG|Q|K)(AG|Q|K)EFFE
474.0 (AAG|AQ|AK)E(AG|Q|K)(N|GG)GSFFE
474.0 (AAG|AQ|AK)E(I|L)E(AG|Q|K)YFE
474.0 (AAG|AQ|AK)E(N|GG)(AG|Q|K)(AG|Q|K)YFE
471.0 (AG|Q|K)AE(AG|Q|K)CST(I|L)FE
470.0 (AG|Q|K)AE(I|L)E(AG|Q|K)YFE
470.0 (AAG|AQ|AK)E(I|L)ESGFFE
469.0 (AAG|AQ|AK)E(I|L)EGSFFE
466.0 (AG|Q|K)AE(N|GG)(AG|Q|K)SGFFE
465.0 (AG|Q|K)AE(N|GG)AAEFFE

Fig. 4. 3717.dta: Sequest sequence AKELQEYFK does not appear within
the first 30 sequences of AuDeNS but many similar sequences do, e.g.,
(AAG|AQ|AK)E(I|L)E(AG|Q|K)YFE.,
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